123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- clear ;%清除工作区的缓存变量
- close all; % 关闭当前的所有窗口
- clc; %清除命令行的数据
- g = 9.7833;
- %尝试读取csv文件
- data_file = csvread('LoggedData2_CalInertialAndMag.csv',1 ,0);
- %把陀螺仪数据,加速度数据拿出来
- gyr_data = data_file(:, 2:4) *pi/180;
- acc_data = data_file(:, 5:7) * g;
- press_data = data_file(:,8:9)';
- %参数设置
- data_size = size(gyr_data,1);
-
- dt = 1/100;
- %当地重力加速度
- %设置过程噪声
- % 状态量为【姿态误差,速度误差,位置误差】
- % 相应的过程噪声协方差
- sigma_omega = 1e-2; sigma_a = 1e-2;
- % 观测噪声协方差,只观测速度误差
- sigma_v = 1e-2;
- R = diag([sigma_v sigma_v sigma_v*0.1]).^2;
- R_xy = diag([sigma_v sigma_v sigma_v sigma_v sigma_v sigma_v]).^2;
- %初始化姿态矩阵
- %先根据加速度计算俯仰角,翻滚角,航向角
- pitch = asin(-acc_data(1,1)/g);
- roll = atan2(acc_data(1,2), acc_data(1,3));
- yaw = 0;
- C_prev = [cos(yaw)*cos(pitch), -sin(yaw)*cos(roll)+cos(yaw)*sin(pitch)*sin(roll), sin(yaw)*sin(roll)+ cos(yaw)*sin(pitch)*cos(roll);
- sin(yaw)*cos(pitch), cos(yaw)*cos(roll)+sin(yaw)*sin(pitch)*sin(roll), -cos(yaw)*sin(roll)+sin(yaw)*sin(pitch)* cos(roll);
- -sin(pitch), cos(pitch)* sin(roll), cos(pitch)*cos(roll);];
- C = C_prev;
- acc_n = zeros(3, data_size);
- acc_n(:,1) = C*acc_data(1,:)'-[0,0,g]';
- vel_n = zeros(3, data_size);
- vel_n_norm = zeros(1,data_size);
- pos_n = zeros(3, data_size);
- P = zeros(9,9);
- H = [zeros(3,3), zeros(3,3), eye(3);
- ];
- H_xy= [zeros(3,3), zeros(3,3), eye(3);
- zeros(3,3),eye(3),zeros(3,3);
- ];
- gyr_norm = nan(1,data_size);
- acc_norm = nan(1,data_size);
- zupt = zeros(1,data_size);
- pitch_data = nan(1,data_size);
- roll_data = nan(1, data_size);
- yaw_data = nan(1, data_size);
- C_buff = zeros(3,3,data_size);
- C_buff(:,:,1) = C;
- last_zupt = 0;
- mini_update = 0;
- step_pos = zeros(3,1);
- has_zupt = 0;
- zupt_pos.x = 0;
- zupt_pos.y = 0;
- zupt_pos.z = 0;
- zupt_pos.yaw = 0;
- last_step_xy = [0;0];
- last_step_xy_tmp = [0;0];
- pos_result = zeros(3,data_size);
- last_pos = [0,0,0]';
- last_zupt_index = 30;
- %以下为记录输出所用
- last_record = 0;
- output_signal = 0;
- output_return = 0;
- stand_num = 0;
- vel_local = zeros(2, data_size);
- last_running = 1;
- for i = 2 : data_size
- %姿态矩阵更新, 其实有没有陀螺仪零片都没多大问题
- % w= gyrData - gyrBias
- w = gyr_data(i,:)';
-
- %陀螺仪K时刻求模,分析数据时候用
- gyr_norm(i) = norm(w);
-
- %当前时刻陀螺仪生成的叉乘矩阵,姿态矩阵迭代需要
- temp = [0, -w(3), w(2);
- w(3), 0, -w(1);
- -w(2), w(1), 0;]* dt;
-
- % 姿态矩阵迭代的经典公示了,也可以用其他的迭代公式
- C= C_prev * (2*eye(3)+temp)/(2*eye(3) - temp);
-
- %速度位置初步更新
- acc = acc_data(i,:)';
-
- %加速度计,分析数据时候用
- acc_norm(i) = norm(acc);
-
- %acc_n为当地的坐标系下的加速度表示,并减去了自身的重力加速度计
- acc_n(:,i) = C * acc;
-
- %导航坐标系下的速度向量迭代公式
- vel_n(:,i) = vel_n(:, i-1) + (acc_n(:,i)- [0,0,g]')*dt;
-
- %导航坐标系下的位置更新公式
- pos_n(:,i) = pos_n(:,i-1) + vel_n(:,i) *dt ;
-
-
- %状态转移矩阵
- S = [0, -acc_n(3,i), acc_n(2,i);
- acc_n(3,i), 0, -acc_n(1,i);
- -acc_n(2,i), acc_n(1,i), 0;];
- %状态向量的顺序为[delta_pitch, delta_roll, delta_yaw,
- % delta_px, delta_py, delta_pz,]
- % delta_vx, delta_vy, delta_vz,]
- % xk = F*x(k-1);
- % 式子的意义 第一行代表 姿态角的误差预测没有改变
- % 第二行代表 当前的位置误差 = 上一个时刻位置误差 + 上一个时刻速度误差*时间
- % 第三行代表 当前的速度误差 = 上一个时刻速度误差 - 加速度X姿态角误差*时间
- % 简单来说是由于姿态误差引起的加速度测量误差,再乘以时间,就得到额外的速度误差
- F = [eye(3), zeros(3,3), zeros(3,3);
- zeros(3,3), eye(3), dt*eye(3);
- -dt*S, zeros(3,3), eye(3)];
-
- %过程噪声的协方差矩阵
- Q = diag([sigma_omega sigma_omega sigma_omega sigma_a sigma_a sigma_a sigma_a sigma_a sigma_a]*dt).^2;
-
- %卡尔曼里面的协方差矩阵迭代公式了
- P = F*P*F' + Q;
-
- % 这里说明一下, if(norm(w)< 1.0) 是来判断IMU触碰到地上用的
- % 一般走路 用不着达到1.0,0.35就可以了,但是剧烈运动是达到1.0的
- % 用固定阈值来判断不是恰当的,可以根据前面一段(t-k:k) 陀螺仪数据是预测
- % 或者根据一步间的IMU数据来衡量跑步还是普通走路
- % 这里为了方便测试,用固定值1.0来算好了
- if(i > 15)
- max_window = max(gyr_norm(i-14:i));
- min_window = min(gyr_norm(i-14:i));
-
- end
- output_return = 0;
-
- yaw_data(i) = atan2(C(2,1),C(1,1));
-
- pitch_data(i) = asin(-C(3,1));
- roll_data(i) = atan2(C(3,2),C(3,3));
-
- pos_result(:,i) = pos_n(:,i) - last_pos;
-
- if( (((gyr_norm(i)< 0.6) && (i > 15) && ((max_window - min_window) < 0.6))...
- || ((gyr_norm(i)< 1.5) && (i > 15) && (i- last_zupt_index > 25) &&(max_window - min_window) > 6.0))...
- || ((gyr_norm(i)< 1.5) && (i > 15) && (i- last_zupt_index > 50) && (max_window - min_window) > 5.0))
-
- if(last_zupt == 1)
- stand_num = stand_num + 1;
- output_signal = 1;
- %用来记录零速的时刻, 可以忽略
- zupt(i) = 0.7;
- %计算卡尔曼滤波增益,公式公式
- % 说明一下H矩阵为观测矩阵,在线性系统下就是值1.观测量需要用到哪一个就在zeros(1,9)中对应的位置为1
- K = P*H'/(H*P*H' + R);
- delta_x = K * [vel_n(:,i)];
- P = P - K*H*P;
- %姿态矩阵补偿
- C_fix = [0, -delta_x(3), delta_x(2);
- delta_x(3), 0, -delta_x(1);
- -delta_x(2), delta_x(1), 0];
- %姿态矩阵补偿
- C = ((2*eye(3)-C_fix)/(2*eye(3) + C_fix))* C;
- %位置补偿
- pos_n(:,i) = pos_n(:,i) - delta_x(4:6);
- vel_n(:,i) = vel_n(:,i) - delta_x(7:9);
- %防止脚地上的时候,Z方向的速度过快
- yaw = 0.0;
- pitch = asin(-C(3,1));
- roll = roll_data(i);
- C = [cos(pitch),sin(pitch)*sin(roll), sin(pitch)*cos(roll);
- 0.0, cos(roll), -1*sin(roll);
- -sin(pitch), cos(pitch)* sin(roll), cos(pitch)*cos(roll);];
-
- %记录一步一步的位置移动
- end
- last_zupt = 1;
- last_running = i;
-
- else
- if(last_zupt == 1)
- last_pos = pos_n(:, i);
- last_zupt_index = i-1;
- last_zupt = 0;
- end
-
- if(output_signal == 1 && pos_result(3,i) < 0)
-
- if(vel_n(2,i) < - 2.0)
- disp(["MOVE_LEFT"]);
- output_return = 3;
- output_signal = 0;
- elseif vel_n(2,i) > 2.0
- disp(["MOVE_RIGTH"]);
- output_return = 4;
- output_signal = 0;
-
- elseif vel_n(1, i) < -2.0
- disp(["MOVE_BACKWARD"]);
- output_return = 2;
- output_signal = 0;
-
- elseif vel_n(1, i) > 2.0
- disp(["MOVE_FORWARD"]);
- output_return = 5;
- output_signal = 0;
- elseif vel_n(3, i) < -2.5
- disp(["MOVE_JUMP"]);
- output_return = 8;
- output_signal = 0;
- elseif i - last_running > 30
- disp(["MOVE_RUNNING"]);
- output_return = 7;
- last_running = i;
-
- end
- end
-
- end
-
-
- if(output_signal == 1 && stand_num > 100)
- output_signal = 0;
- output_return = 9;
- stand_num = 0;
- % disp(["MOVE_stand"]);
- end
- %计算速度的均方值
- vel_n_norm(i) = norm(vel_n(:, i));
-
-
- %保持协方差矩阵的对称性
- P = (P+P')/2;
-
- C_prev = C;
-
-
- vel_local(:,i) = [cos(yaw_data(i)), -sin(yaw_data(i)) ;
- sin(yaw_data(i)), cos(yaw_data(i))]*vel_n(1:2, i);
-
-
- C_buff(:,:,i) = C;
-
- %输出
- end
- % 其实做这种游戏的姿态估计,能大概判断第K步相对于第K-1偏移多少就好(方向,x,y位置)
- % 例如判断左、右、前、后,移动的情况,可以根据
- % theta_yaw = yaw(k)-yaw(k-1);
- % R = sqrt((pos_n(1,k)- pos_n(1,k-1))^2 + (pos_n(2,k)- pos_n(2,k-1))^2 )
- % [x, y] =[cos(theta),sin(theta)]*R;就可以根据XY的符号判断左右前后了
- % 跳的动作根据v_z, p_z来判断,初步是可以的;
- figure('NumberTitle', 'off', 'Name', 'Offset pos');
- hold on;
- plot(pos_result(1,:), 'r');
- plot(pos_result(2,:), 'g');
- plot(pos_result(3,:), 'b');
- hold on;
- index = find(zupt==0.9);
- plot(index,pos_result(3, index), 'ko');
- grid;
- xlabel('sample');
- ylabel('m');
- title('Offset pos');
- legend('X', 'Y', 'Z');
- figure('NumberTitle', 'off', 'Name', 'Linear Velocity');
- hold on;
- plot(vel_n(1,:), 'r');
- plot(vel_n(2,:), 'g');
- plot(vel_n(3,:), 'b');
- plot(vel_n_norm(:), 'm')
- index = find(zupt>0.0);
- plot(index,vel_n(3, index), 'ko');
- grid;
- xlabel('sample');
- ylabel('m/s');
- title('local velocity');
- legend('X', 'Y', 'Z');
- figure('NumberTitle', 'off', 'Name', 'Linear Position');
- hold on;
- plot(pos_n(1,:), 'r');
- plot(pos_n(2,:), 'g');
- plot(pos_n(3,:), 'b');
- grid;
- xlabel('sample');
- ylabel('m');
- title('local position');
- legend('X', 'Y', 'Z');
- % figure
- % plot3(pos_n(1,:), pos_n(2,:), pos_n(3,:));
- %
- % pose_diff = step_pos(1:2, 2:end) - step_pos(1:2, 1:end-1);
- % figure
- % plot( step_pos(2,:))
- %
- figure
- plot(gyr_norm(1,:),'r')
- hold on
- plot((acc_norm(1,:)-9.8)/5,'g');
- hold on
- plot(index,(gyr_norm(1,index)), 'ko');
- grid on
- figure
- plot3(pos_n(1,:), pos_n(2,:), pos_n(3, :),'r');grid on
- figure('NumberTitle', 'off', 'Name', 'IMU vel');
- hold on;
- plot(vel_local(1,:), 'r');
- plot(vel_local(2,:), 'g');
- %% Animation
- %% The animation code was stolen from xioTechnologies.
- %% https://github.com/xioTechnologies/Gait-Tracking-With-x-IMU
- % L = data_size;
- % SamplePlotFreq = 4;
- % Spin = 120;
- % SixDofAnimation(pos_result(1:3,:)', C_buff, ...
- % 'SamplePlotFreq', SamplePlotFreq, 'Trail', 'All',...
- % 'Position', [9 39 1280 768],...
- % 'View', [(100:(Spin/(L-1)):(100+Spin))', 10*ones(L, 1)],...
- % 'AxisLength', 0.1, 'ShowArrowHead', false, ...
- % 'Xlabel', 'X (m)', 'Ylabel', 'Y (m)', 'Zlabel', 'Z (m)',...
- % 'ShowLegend', false,...
- % 'CreateVideo', false);
|