/** * Copyright (c) 2015 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #if NRFX_CHECK(NRFX_SPIM_ENABLED) #if !(NRFX_CHECK(NRFX_SPIM0_ENABLED) || NRFX_CHECK(NRFX_SPIM1_ENABLED) || \ NRFX_CHECK(NRFX_SPIM2_ENABLED) || NRFX_CHECK(NRFX_SPIM3_ENABLED)) #error "No enabled SPIM instances. Check ." #endif #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) && !NRFX_CHECK(NRFX_SPIM3_ENABLED) #error "Extended options are available only in SPIM3 on the nRF52840 SoC." #endif #include #include "nrfx_prs.h" #include #define NRFX_LOG_MODULE SPIM #include #define SPIMX_LENGTH_VALIDATE(peripheral, drv_inst_idx, rx_len, tx_len) \ (((drv_inst_idx) == NRFX_CONCAT_3(NRFX_, peripheral, _INST_IDX)) && \ NRFX_EASYDMA_LENGTH_VALIDATE(peripheral, rx_len, tx_len)) #if NRFX_CHECK(NRFX_SPIM0_ENABLED) #define SPIM0_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM0, __VA_ARGS__) #else #define SPIM0_LENGTH_VALIDATE(...) 0 #endif #if NRFX_CHECK(NRFX_SPIM1_ENABLED) #define SPIM1_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM1, __VA_ARGS__) #else #define SPIM1_LENGTH_VALIDATE(...) 0 #endif #if NRFX_CHECK(NRFX_SPIM2_ENABLED) #define SPIM2_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM2, __VA_ARGS__) #else #define SPIM2_LENGTH_VALIDATE(...) 0 #endif #if NRFX_CHECK(NRFX_SPIM3_ENABLED) #define SPIM3_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM3, __VA_ARGS__) #else #define SPIM3_LENGTH_VALIDATE(...) 0 #endif #define SPIM_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) \ (SPIM0_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \ SPIM1_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \ SPIM2_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \ SPIM3_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len)) #if defined(NRF52840_XXAA) && (NRFX_CHECK(NRFX_SPIM3_ENABLED)) // Enable workaround for nRF52840 anomaly 195 (SPIM3 continues to draw current after disable). #define USE_WORKAROUND_FOR_ANOMALY_195 #endif // Control block - driver instance local data. typedef struct { nrfx_spim_evt_handler_t handler; void * p_context; nrfx_spim_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy. nrfx_drv_state_t state; volatile bool transfer_in_progress; #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) bool use_hw_ss; #endif // [no need for 'volatile' attribute for the following members, as they // are not concurrently used in IRQ handlers and main line code] bool ss_active_high; uint8_t ss_pin; uint8_t miso_pin; uint8_t orc; #if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED) size_t tx_length; size_t rx_length; #endif } spim_control_block_t; static spim_control_block_t m_cb[NRFX_SPIM_ENABLED_COUNT]; #if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED) // Workaround for nRF52840 anomaly 198: SPIM3 transmit data might be corrupted. static uint32_t m_anomaly_198_preserved_value; static void anomaly_198_enable(uint8_t const * p_buffer, size_t buf_len) { m_anomaly_198_preserved_value = *((volatile uint32_t *)0x40000E00); if (buf_len == 0) { return; } uint32_t buffer_end_addr = ((uint32_t)p_buffer) + buf_len; uint32_t block_addr = ((uint32_t)p_buffer) & ~0x1FFF; uint32_t block_flag = (1UL << ((block_addr >> 13) & 0xFFFF)); uint32_t occupied_blocks = 0; if (block_addr >= 0x20010000) { occupied_blocks = (1UL << 8); } else { do { occupied_blocks |= block_flag; block_flag <<= 1; block_addr += 0x2000; } while ((block_addr < buffer_end_addr) && (block_addr < 0x20012000)); } *((volatile uint32_t *)0x40000E00) = occupied_blocks; } static void anomaly_198_disable(void) { *((volatile uint32_t *)0x40000E00) = m_anomaly_198_preserved_value; } #endif // NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED) nrfx_err_t nrfx_spim_init(nrfx_spim_t const * const p_instance, nrfx_spim_config_t const * p_config, nrfx_spim_evt_handler_t handler, void * p_context) { NRFX_ASSERT(p_config); spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; nrfx_err_t err_code; if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED) { err_code = NRFX_ERROR_INVALID_STATE; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) // Currently, only SPIM3 in nRF52840 supports the extended features. // Other instances must be checked. if ((p_instance->drv_inst_idx != NRFX_SPIM3_INST_IDX) && ((p_config->dcx_pin != NRFX_SPIM_PIN_NOT_USED) || (p_config->frequency == NRF_SPIM_FREQ_16M) || (p_config->frequency == NRF_SPIM_FREQ_32M) || (p_config->use_hw_ss))) { err_code = NRFX_ERROR_NOT_SUPPORTED; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #endif NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg; #if NRFX_CHECK(NRFX_PRS_ENABLED) static nrfx_irq_handler_t const irq_handlers[NRFX_SPIM_ENABLED_COUNT] = { #if NRFX_CHECK(NRFX_SPIM0_ENABLED) nrfx_spim_0_irq_handler, #endif #if NRFX_CHECK(NRFX_SPIM1_ENABLED) nrfx_spim_1_irq_handler, #endif #if NRFX_CHECK(NRFX_SPIM2_ENABLED) nrfx_spim_2_irq_handler, #endif #if NRFX_CHECK(NRFX_SPIM3_ENABLED) nrfx_spim_3_irq_handler, #endif }; if (nrfx_prs_acquire(p_instance->p_reg, irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #endif // NRFX_CHECK(NRFX_PRS_ENABLED) p_cb->handler = handler; p_cb->p_context = p_context; uint32_t mosi_pin; uint32_t miso_pin; // Configure pins used by the peripheral: // - SCK - output with initial value corresponding with the SPI mode used: // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1); // according to the reference manual guidelines this pin and its input // buffer must always be connected for the SPI to work. if (p_config->mode <= NRF_SPIM_MODE_1) { nrf_gpio_pin_clear(p_config->sck_pin); } else { nrf_gpio_pin_set(p_config->sck_pin); } nrf_gpio_cfg(p_config->sck_pin, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); // - MOSI (optional) - output with initial value 0, if (p_config->mosi_pin != NRFX_SPIM_PIN_NOT_USED) { mosi_pin = p_config->mosi_pin; nrf_gpio_pin_clear(mosi_pin); nrf_gpio_cfg_output(mosi_pin); } else { mosi_pin = NRF_SPIM_PIN_NOT_CONNECTED; } // - MISO (optional) - input, if (p_config->miso_pin != NRFX_SPIM_PIN_NOT_USED) { miso_pin = p_config->miso_pin; nrf_gpio_cfg_input(miso_pin, (nrf_gpio_pin_pull_t)NRFX_SPIM_MISO_PULL_CFG); } else { miso_pin = NRF_SPIM_PIN_NOT_CONNECTED; } p_cb->miso_pin = p_config->miso_pin; // - Slave Select (optional) - output with initial value 1 (inactive). // 'p_cb->ss_pin' variable is used during transfers to check if SS pin should be toggled, // so this field needs to be initialized even if the pin is not used. p_cb->ss_pin = p_config->ss_pin; if (p_config->ss_pin != NRFX_SPIM_PIN_NOT_USED) { if (p_config->ss_active_high) { nrf_gpio_pin_clear(p_config->ss_pin); } else { nrf_gpio_pin_set(p_config->ss_pin); } nrf_gpio_cfg_output(p_config->ss_pin); #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) if (p_config->use_hw_ss) { p_cb->use_hw_ss = p_config->use_hw_ss; nrf_spim_csn_configure(p_spim, p_config->ss_pin, (p_config->ss_active_high == true ? NRF_SPIM_CSN_POL_HIGH : NRF_SPIM_CSN_POL_LOW), p_config->ss_duration); } #endif p_cb->ss_active_high = p_config->ss_active_high; } #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) // - DCX (optional) - output. if (p_config->dcx_pin != NRFX_SPIM_PIN_NOT_USED) { nrf_gpio_pin_set(p_config->dcx_pin); nrf_gpio_cfg_output(p_config->dcx_pin); nrf_spim_dcx_pin_set(p_spim, p_config->dcx_pin); } // Change rx delay nrf_spim_iftiming_set(p_spim, p_config->rx_delay); #endif nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin); nrf_spim_frequency_set(p_spim, p_config->frequency); nrf_spim_configure(p_spim, p_config->mode, p_config->bit_order); nrf_spim_orc_set(p_spim, p_config->orc); nrf_spim_enable(p_spim); if (p_cb->handler) { NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg), p_config->irq_priority); NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg)); } p_cb->transfer_in_progress = false; p_cb->state = NRFX_DRV_STATE_INITIALIZED; err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrfx_spim_uninit(nrfx_spim_t const * const p_instance) { spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); if (p_cb->handler) { NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg)); } NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg; if (p_cb->handler) { nrf_spim_int_disable(p_spim, NRF_SPIM_ALL_INTS_MASK); if (p_cb->transfer_in_progress) { // Ensure that SPI is not performing any transfer. nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP); // while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) // {} uint32_t timeout = 2000; while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED) && timeout > 0) {timeout--;} p_cb->transfer_in_progress = false; } } if (p_cb->miso_pin != NRFX_SPIM_PIN_NOT_USED) { nrf_gpio_cfg_default(p_cb->miso_pin); } nrf_spim_disable(p_spim); #ifdef USE_WORKAROUND_FOR_ANOMALY_195 if (p_spim == NRF_SPIM3) { *(volatile uint32_t *)0x4002F004 = 1; } #endif #if NRFX_CHECK(NRFX_PRS_ENABLED) nrfx_prs_release(p_instance->p_reg); #endif p_cb->state = NRFX_DRV_STATE_UNINITIALIZED; } #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) nrfx_err_t nrfx_spim_xfer_dcx(nrfx_spim_t const * const p_instance, nrfx_spim_xfer_desc_t const * p_xfer_desc, uint32_t flags, uint8_t cmd_length) { NRFX_ASSERT(cmd_length <= NRF_SPIM_DCX_CNT_ALL_CMD); nrf_spim_dcx_cnt_set((NRF_SPIM_Type *)p_instance->p_reg, cmd_length); return nrfx_spim_xfer(p_instance, p_xfer_desc, 0); } #endif static void finish_transfer(spim_control_block_t * p_cb) { // If Slave Select signal is used, this is the time to deactivate it. if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED) { #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) if (!p_cb->use_hw_ss) #endif { if (p_cb->ss_active_high) { nrf_gpio_pin_clear(p_cb->ss_pin); } else { nrf_gpio_pin_set(p_cb->ss_pin); } } } // By clearing this flag before calling the handler we allow subsequent // transfers to be started directly from the handler function. p_cb->transfer_in_progress = false; p_cb->evt.type = NRFX_SPIM_EVENT_DONE; p_cb->handler(&p_cb->evt, p_cb->p_context); } __STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable) { if (!enable) { nrf_spim_int_disable(p_spim, NRF_SPIM_INT_END_MASK); } else { nrf_spim_int_enable(p_spim, NRF_SPIM_INT_END_MASK); } } __STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags) { if (NRFX_SPIM_FLAG_TX_POSTINC & flags) { nrf_spim_tx_list_enable(p_spim); } else { nrf_spim_tx_list_disable(p_spim); } if (NRFX_SPIM_FLAG_RX_POSTINC & flags) { nrf_spim_rx_list_enable(p_spim); } else { nrf_spim_rx_list_disable(p_spim); } } static nrfx_err_t spim_xfer(NRF_SPIM_Type * p_spim, spim_control_block_t * p_cb, nrfx_spim_xfer_desc_t const * p_xfer_desc, uint32_t flags) { nrfx_err_t err_code; // EasyDMA requires that transfer buffers are placed in Data RAM region; // signal error if they are not. if ((p_xfer_desc->p_tx_buffer != NULL && !nrfx_is_in_ram(p_xfer_desc->p_tx_buffer)) || (p_xfer_desc->p_rx_buffer != NULL && !nrfx_is_in_ram(p_xfer_desc->p_rx_buffer))) { p_cb->transfer_in_progress = false; err_code = NRFX_ERROR_INVALID_ADDR; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED) p_cb->tx_length = 0; p_cb->rx_length = 0; #endif nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length); nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length); #if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED) if (p_spim == NRF_SPIM3) { anomaly_198_enable(p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length); } #endif nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); spim_list_enable_handle(p_spim, flags); if (!(flags & NRFX_SPIM_FLAG_HOLD_XFER)) { nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); } #if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED) if (flags & NRFX_SPIM_FLAG_HOLD_XFER) { nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); p_cb->tx_length = p_xfer_desc->tx_length; p_cb->rx_length = p_xfer_desc->rx_length; nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0); nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0); nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK); } #endif if (!p_cb->handler) { while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){} #if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED) if (p_spim == NRF_SPIM3) { anomaly_198_disable(); } #endif if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED) { #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) if (!p_cb->use_hw_ss) #endif { if (p_cb->ss_active_high) { nrf_gpio_pin_clear(p_cb->ss_pin); } else { nrf_gpio_pin_set(p_cb->ss_pin); } } } } else { spim_int_enable(p_spim, !(flags & NRFX_SPIM_FLAG_NO_XFER_EVT_HANDLER)); } err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_spim_xfer(nrfx_spim_t const * const p_instance, nrfx_spim_xfer_desc_t const * p_xfer_desc, uint32_t flags) { spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); NRFX_ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0); NRFX_ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0); NRFX_ASSERT(SPIM_LENGTH_VALIDATE(p_instance->drv_inst_idx, p_xfer_desc->rx_length, p_xfer_desc->tx_length)); nrfx_err_t err_code = NRFX_SUCCESS; if (p_cb->transfer_in_progress) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } else { if (p_cb->handler && !(flags & (NRFX_SPIM_FLAG_REPEATED_XFER | NRFX_SPIM_FLAG_NO_XFER_EVT_HANDLER))) { p_cb->transfer_in_progress = true; } } p_cb->evt.xfer_desc = *p_xfer_desc; if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED) { #if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) if (!p_cb->use_hw_ss) #endif { if (p_cb->ss_active_high) { nrf_gpio_pin_set(p_cb->ss_pin); } else { nrf_gpio_pin_clear(p_cb->ss_pin); } } } return spim_xfer(p_instance->p_reg, p_cb, p_xfer_desc, flags); } void nrfx_spim_abort(nrfx_spim_t const * p_instance) { spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); nrf_spim_task_trigger(p_instance->p_reg, NRF_SPIM_TASK_STOP); while (!nrf_spim_event_check(p_instance->p_reg, NRF_SPIM_EVENT_STOPPED)) {} p_cb->transfer_in_progress = false; } uint32_t nrfx_spim_start_task_get(nrfx_spim_t const * p_instance) { NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg; return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START); } uint32_t nrfx_spim_end_event_get(nrfx_spim_t const * p_instance) { NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg; return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END); } static void irq_handler(NRF_SPIM_Type * p_spim, spim_control_block_t * p_cb) { #if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED) if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) && (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) ) { /* Handle first, zero-length, auxiliary transmission. */ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); NRFX_ASSERT(p_spim->TXD.MAXCNT == 0); p_spim->TXD.MAXCNT = p_cb->tx_length; NRFX_ASSERT(p_spim->RXD.MAXCNT == 0); p_spim->RXD.MAXCNT = p_cb->rx_length; /* Disable STARTED interrupt, used only in auxiliary transmission. */ nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK); /* Start the actual, glitch-free transmission. */ nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); return; } #endif if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)) { #if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED) if (p_spim == NRF_SPIM3) { anomaly_198_disable(); } #endif nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); NRFX_ASSERT(p_cb->handler); NRFX_LOG_DEBUG("Event: NRF_SPIM_EVENT_END."); finish_transfer(p_cb); } } #if NRFX_CHECK(NRFX_SPIM0_ENABLED) void nrfx_spim_0_irq_handler(void) { irq_handler(NRF_SPIM0, &m_cb[NRFX_SPIM0_INST_IDX]); } #endif #if NRFX_CHECK(NRFX_SPIM1_ENABLED) void nrfx_spim_1_irq_handler(void) { irq_handler(NRF_SPIM1, &m_cb[NRFX_SPIM1_INST_IDX]); } #endif #if NRFX_CHECK(NRFX_SPIM2_ENABLED) void nrfx_spim_2_irq_handler(void) { irq_handler(NRF_SPIM2, &m_cb[NRFX_SPIM2_INST_IDX]); } #endif #if NRFX_CHECK(NRFX_SPIM3_ENABLED) void nrfx_spim_3_irq_handler(void) { irq_handler(NRF_SPIM3, &m_cb[NRFX_SPIM3_INST_IDX]); } #endif #endif // NRFX_CHECK(NRFX_SPIM_ENABLED)