123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- //=============================================================================================
- // MahonyAHRS.c
- //=============================================================================================
- //
- // Madgwick's implementation of Mayhony's AHRS algorithm.
- // See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
- //
- // From the x-io website "Open-source resources available on this website are
- // provided under the GNU General Public Licence unless an alternative licence
- // is provided in source."
- //
- // Date Author Notes
- // 29/09/2011 SOH Madgwick Initial release
- // 02/10/2011 SOH Madgwick Optimised for reduced CPU load
- //
- // Algorithm paper:
- // http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4608934&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D4608934
- //
- //=============================================================================================
- //-------------------------------------------------------------------------------------------
- // Header files
- #include "hal_mahonyAHRS.h"
- #include <math.h>
- #include "system.h"
- #include "ble_comm.h"
- #include "hal_ble_client.h"
- //-------------------------------------------------------------------------------------------
- // Definitions
- #define twoKpDef (10.0f * 0.5f) // 2 * proportional gain
- #define twoKiDef (0.0f * 1.0f) // 2 * integral gain
- //float Mahony_GetRoll(void) {return P->roll;}
- //float Mahony_GetPitch(void) {return P->pitch;}
- //float Mahony_GetYaw(void) {return P->yaw;}
- //void Mahony_GetAccN(float* accn){accn[0] = P->accN[1]; accn[1] = P->accN[2]; accn[2] = P->accN[3];}
- void Mahony_send_ANO(uint8_t fun,uint8_t* p,int len)
- {
- uint8_t buf[256];
- int L=0;
- uint8_t ver = 0;
-
- buf[L] = 0xAA; ver += buf[L++];
- buf[L] = 0x05; ver += buf[L++];
- buf[L] = 0xAF; ver += buf[L++];
- buf[L] = fun; ver += buf[L++];
- buf[L] = len; ver += buf[L++];
- for(int i=0;i<len;i++){
- buf[L] = p[i]; ver += buf[L++];
- }
- buf[L++] = ver;
- send_bytes_client(buf,L);
-
- }
- static void quaternProd(float* ab, float* a, float* b)
- {
- ab[0] = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3];
- ab[1] = a[0] * b[1] + a[1] * b[0] + a[2] * b[3] - a[3] * b[2];
- ab[2] = a[0] * b[2] - a[1] * b[3] + a[2] * b[0] + a[3] * b[1];
- ab[3] = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0];
- }
- static void quaternConj(float* a)
- {
- a[1] = -a[1];
- a[2] = -a[2];
- a[3] = -a[3];
- }
- float Mahony_invSqrt(float x)
- {
- float halfx = 0.5f * x;
- float y = x;
- long i = *(long*)&y;
- i = 0x5f3759df - (i>>1);
- y = *(float*)&i;
- y = y * (1.5f - (halfx * y * y));
- y = y * (1.5f - (halfx * y * y));
- return y;
- }
- void Mahony_update(MahonyAHRS_t *P,float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
- {
- float recipNorm;
- float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
- float hx, hy, bx, bz;
- float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
- float halfex, halfey, halfez;
- float qa, qb, qc;
-
- //因为下面算法会改变原始值,所以先保存一份
- P->accN[0] = 0.0f;
- P->accN[1] = ax;
- P->accN[2] = ay;
- P->accN[3] = az;
- // Compute feedback only if accelerometer measurement valid
- // (avoids NaN in accelerometer normalisation)
- if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
- // Normalise accelerometer measurement
- recipNorm = Mahony_invSqrt(ax * ax + ay * ay + az * az);
- ax *= recipNorm;
- ay *= recipNorm;
- az *= recipNorm;
- // Normalise magnetometer measurement
- recipNorm = Mahony_invSqrt(mx * mx + my * my + mz * mz);
- mx *= recipNorm;
- my *= recipNorm;
- mz *= recipNorm;
- // Auxiliary variables to avoid repeated arithmetic
- q0q0 = P->q0 * P->q0;
- q0q1 = P->q0 * P->q1;
- q0q2 = P->q0 * P->q2;
- q0q3 = P->q0 * P->q3;
- q1q1 = P->q1 * P->q1;
- q1q2 = P->q1 * P->q2;
- q1q3 = P->q1 * P->q3;
- q2q2 = P->q2 * P->q2;
- q2q3 = P->q2 * P->q3;
- q3q3 = P->q3 * P->q3;
- // Reference direction of Earth's magnetic field
- hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
- hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
- bx = sqrtf(hx * hx + hy * hy);
- bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
- // Estimated direction of gravity and magnetic field
- halfvx = q1q3 - q0q2;
- halfvy = q0q1 + q2q3;
- halfvz = q0q0 - 0.5f + q3q3;
- halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
- halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
- halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
- // Error is sum of cross product between estimated direction
- // and measured direction of field vectors
- halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
- halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
- halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
- // Compute and apply integral feedback if enabled
- if(P->twoKi > 0.0f) {
- // integral error scaled by Ki
- P->integralFBx += P->twoKi * halfex * P->invSampleFreq;
- P->integralFBy += P->twoKi * halfey * P->invSampleFreq;
- P->integralFBz += P->twoKi * halfez * P->invSampleFreq;
- gx += P->integralFBx; // apply integral feedback
- gy += P->integralFBy;
- gz += P->integralFBz;
- } else {
- P->integralFBx = 0.0f; // prevent integral windup
- P->integralFBy = 0.0f;
- P->integralFBz = 0.0f;
- }
- // Apply proportional feedback
- gx += twoKpDef * halfex;
- gy += twoKpDef * halfey;
- gz += twoKpDef * halfez;
- }
- // Integrate rate of change of quaternion
- gx *= (0.5f * P->invSampleFreq); // pre-multiply common factors
- gy *= (0.5f * P->invSampleFreq);
- gz *= (0.5f * P->invSampleFreq);
- qa = P->q0;
- qb = P->q1;
- qc = P->q2;
- P->q0 += (-qb * gx - qc * gy - P->q3 * gz);
- P->q1 += (qa * gx + qc * gz - P->q3 * gy);
- P->q2 += (qa * gy - qb * gz + P->q3 * gx);
- P->q3 += (qa * gz + qb * gy - qc * gx);
- // Normalise quaternion
- recipNorm = Mahony_invSqrt(P->q0 * P->q0 + P->q1 * P->q1 + P->q2 * P->q2 + P->q3 * P->q3);
- P->q0 *= recipNorm;
- P->q1 *= recipNorm;
- P->q2 *= recipNorm;
- P->q3 *= recipNorm;
-
- //计算三个角度
- P->roll = atan2f(P->q0*P->q1 + P->q2*P->q3, 0.5f - P->q1*P->q1 - P->q2*P->q2) * 57.29578f;;
- P->pitch = asinf(-2.0f * (P->q1*P->q3 - P->q0*P->q2)) * 57.29578f;;
- P->yaw = atan2f(P->q1*P->q2 + P->q0*P->q3, 0.5f - P->q2*P->q2 - P->q3*P->q3) * 57.29578f;;
-
- //坐标系转换
- P->q[0] = P->q0;
- P->q[1] = P->q1;
- P->q[2] = P->q2;
- P->q[3] = P->q3;
-
-
- float tmp_vector2[4];
-
- quaternProd(tmp_vector2, P->q, P->accN);
- quaternConj(P->q);
- quaternProd(P->accN, tmp_vector2, P->q);
- P->accN[3] = P->accN[3] - 1.0f;//去重力
- }
- void Mahony_Init(MahonyAHRS_t *P,float sampleFrequency)
- {
- P->twoKi = twoKiDef; // 2 * integral gain (Ki)
- P->q0 = 1.0f;
- P->q1 = 0.0f;
- P->q2 = 0.0f;
- P->q3 = 0.0f;
- P->integralFBx = 0.0f;
- P->integralFBy = 0.0f;
- P->integralFBz = 0.0f;
- P->invSampleFreq = 1.0f / sampleFrequency;
- }
- //============================================================================================
- // END OF CODE
- //============================================================================================
|