nist_kw.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes
  3. * only
  4. *
  5. * Copyright (C) 2018, Arm Limited (or its affiliates), All Rights Reserved
  6. * SPDX-License-Identifier: Apache-2.0
  7. *
  8. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  9. * not use this file except in compliance with the License.
  10. * You may obtain a copy of the License at
  11. *
  12. * http://www.apache.org/licenses/LICENSE-2.0
  13. *
  14. * Unless required by applicable law or agreed to in writing, software
  15. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  16. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  17. * See the License for the specific language governing permissions and
  18. * limitations under the License.
  19. *
  20. * This file is part of Mbed TLS (https://tls.mbed.org)
  21. */
  22. /*
  23. * Definition of Key Wrapping:
  24. * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
  25. * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm"
  26. * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm"
  27. *
  28. * Note: RFC 3394 defines different methodology for intermediate operations for
  29. * the wrapping and unwrapping operation than the definition in NIST SP 800-38F.
  30. */
  31. #if !defined(MBEDTLS_CONFIG_FILE)
  32. #include "mbedtls/config.h"
  33. #else
  34. #include MBEDTLS_CONFIG_FILE
  35. #endif
  36. #if defined(MBEDTLS_NIST_KW_C)
  37. #include "mbedtls/nist_kw.h"
  38. #include "mbedtls/platform_util.h"
  39. #include <stdint.h>
  40. #include <string.h>
  41. #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
  42. #if defined(MBEDTLS_PLATFORM_C)
  43. #include "mbedtls/platform.h"
  44. #else
  45. #include <stdio.h>
  46. #define mbedtls_printf printf
  47. #endif /* MBEDTLS_PLATFORM_C */
  48. #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
  49. #if !defined(MBEDTLS_NIST_KW_ALT)
  50. #define KW_SEMIBLOCK_LENGTH 8
  51. #define MIN_SEMIBLOCKS_COUNT 3
  52. /* constant-time buffer comparison */
  53. static inline unsigned char mbedtls_nist_kw_safer_memcmp( const void *a, const void *b, size_t n )
  54. {
  55. size_t i;
  56. volatile const unsigned char *A = (volatile const unsigned char *) a;
  57. volatile const unsigned char *B = (volatile const unsigned char *) b;
  58. volatile unsigned char diff = 0;
  59. for( i = 0; i < n; i++ )
  60. {
  61. /* Read volatile data in order before computing diff.
  62. * This avoids IAR compiler warning:
  63. * 'the order of volatile accesses is undefined ..' */
  64. unsigned char x = A[i], y = B[i];
  65. diff |= x ^ y;
  66. }
  67. return( diff );
  68. }
  69. /*! The 64-bit default integrity check value (ICV) for KW mode. */
  70. static const unsigned char NIST_KW_ICV1[] = {0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6};
  71. /*! The 32-bit default integrity check value (ICV) for KWP mode. */
  72. static const unsigned char NIST_KW_ICV2[] = {0xA6, 0x59, 0x59, 0xA6};
  73. #ifndef GET_UINT32_BE
  74. #define GET_UINT32_BE(n,b,i) \
  75. do { \
  76. (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
  77. | ( (uint32_t) (b)[(i) + 1] << 16 ) \
  78. | ( (uint32_t) (b)[(i) + 2] << 8 ) \
  79. | ( (uint32_t) (b)[(i) + 3] ); \
  80. } while( 0 )
  81. #endif
  82. #ifndef PUT_UINT32_BE
  83. #define PUT_UINT32_BE(n,b,i) \
  84. do { \
  85. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  86. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  87. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  88. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  89. } while( 0 )
  90. #endif
  91. /*
  92. * Initialize context
  93. */
  94. void mbedtls_nist_kw_init( mbedtls_nist_kw_context *ctx )
  95. {
  96. memset( ctx, 0, sizeof( mbedtls_nist_kw_context ) );
  97. }
  98. int mbedtls_nist_kw_setkey( mbedtls_nist_kw_context *ctx,
  99. mbedtls_cipher_id_t cipher,
  100. const unsigned char *key,
  101. unsigned int keybits,
  102. const int is_wrap )
  103. {
  104. int ret;
  105. const mbedtls_cipher_info_t *cipher_info;
  106. cipher_info = mbedtls_cipher_info_from_values( cipher,
  107. keybits,
  108. MBEDTLS_MODE_ECB );
  109. if( cipher_info == NULL )
  110. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  111. if( cipher_info->block_size != 16 )
  112. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  113. /*
  114. * SP 800-38F currently defines AES cipher as the only block cipher allowed:
  115. * "For KW and KWP, the underlying block cipher shall be approved, and the
  116. * block size shall be 128 bits. Currently, the AES block cipher, with key
  117. * lengths of 128, 192, or 256 bits, is the only block cipher that fits
  118. * this profile."
  119. * Currently we don't support other 128 bit block ciphers for key wrapping,
  120. * such as Camellia and Aria.
  121. */
  122. if( cipher != MBEDTLS_CIPHER_ID_AES )
  123. return( MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE );
  124. mbedtls_cipher_free( &ctx->cipher_ctx );
  125. if( ( ret = mbedtls_cipher_setup( &ctx->cipher_ctx, cipher_info ) ) != 0 )
  126. return( ret );
  127. if( ( ret = mbedtls_cipher_setkey( &ctx->cipher_ctx, key, keybits,
  128. is_wrap ? MBEDTLS_ENCRYPT :
  129. MBEDTLS_DECRYPT )
  130. ) != 0 )
  131. {
  132. return( ret );
  133. }
  134. return( 0 );
  135. }
  136. /*
  137. * Free context
  138. */
  139. void mbedtls_nist_kw_free( mbedtls_nist_kw_context *ctx )
  140. {
  141. mbedtls_cipher_free( &ctx->cipher_ctx );
  142. mbedtls_platform_zeroize( ctx, sizeof( mbedtls_nist_kw_context ) );
  143. }
  144. /*
  145. * Helper function for Xoring the uint64_t "t" with the encrypted A.
  146. * Defined in NIST SP 800-38F section 6.1
  147. */
  148. static void calc_a_xor_t( unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t )
  149. {
  150. size_t i = 0;
  151. for( i = 0; i < sizeof( t ); i++ )
  152. {
  153. A[i] ^= ( t >> ( ( sizeof( t ) - 1 - i ) * 8 ) ) & 0xff;
  154. }
  155. }
  156. /*
  157. * KW-AE as defined in SP 800-38F section 6.2
  158. * KWP-AE as defined in SP 800-38F section 6.3
  159. */
  160. int mbedtls_nist_kw_wrap( mbedtls_nist_kw_context *ctx,
  161. mbedtls_nist_kw_mode_t mode,
  162. const unsigned char *input, size_t in_len,
  163. unsigned char *output, size_t *out_len, size_t out_size )
  164. {
  165. int ret = 0;
  166. size_t semiblocks = 0;
  167. size_t s;
  168. size_t olen, padlen = 0;
  169. uint64_t t = 0;
  170. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  171. unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
  172. unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH;
  173. unsigned char *A = output;
  174. *out_len = 0;
  175. /*
  176. * Generate the String to work on
  177. */
  178. if( mode == MBEDTLS_KW_MODE_KW )
  179. {
  180. if( out_size < in_len + KW_SEMIBLOCK_LENGTH )
  181. {
  182. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  183. }
  184. /*
  185. * According to SP 800-38F Table 1, the plaintext length for KW
  186. * must be between 2 to 2^54-1 semiblocks inclusive.
  187. */
  188. if( in_len < 16 ||
  189. #if SIZE_MAX > 0x1FFFFFFFFFFFFF8
  190. in_len > 0x1FFFFFFFFFFFFF8 ||
  191. #endif
  192. in_len % KW_SEMIBLOCK_LENGTH != 0 )
  193. {
  194. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  195. }
  196. memcpy( output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH );
  197. memmove( output + KW_SEMIBLOCK_LENGTH, input, in_len );
  198. }
  199. else
  200. {
  201. if( in_len % 8 != 0 )
  202. {
  203. padlen = ( 8 - ( in_len % 8 ) );
  204. }
  205. if( out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen )
  206. {
  207. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  208. }
  209. /*
  210. * According to SP 800-38F Table 1, the plaintext length for KWP
  211. * must be between 1 and 2^32-1 octets inclusive.
  212. */
  213. if( in_len < 1
  214. #if SIZE_MAX > 0xFFFFFFFF
  215. || in_len > 0xFFFFFFFF
  216. #endif
  217. )
  218. {
  219. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  220. }
  221. memcpy( output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2 );
  222. PUT_UINT32_BE( ( in_len & 0xffffffff ), output,
  223. KW_SEMIBLOCK_LENGTH / 2 );
  224. memcpy( output + KW_SEMIBLOCK_LENGTH, input, in_len );
  225. memset( output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen );
  226. }
  227. semiblocks = ( ( in_len + padlen ) / KW_SEMIBLOCK_LENGTH ) + 1;
  228. s = 6 * ( semiblocks - 1 );
  229. if( mode == MBEDTLS_KW_MODE_KWP
  230. && in_len <= KW_SEMIBLOCK_LENGTH )
  231. {
  232. memcpy( inbuff, output, 16 );
  233. ret = mbedtls_cipher_update( &ctx->cipher_ctx,
  234. inbuff, 16, output, &olen );
  235. if( ret != 0 )
  236. goto cleanup;
  237. }
  238. else
  239. {
  240. /*
  241. * Do the wrapping function W, as defined in RFC 3394 section 2.2.1
  242. */
  243. if( semiblocks < MIN_SEMIBLOCKS_COUNT )
  244. {
  245. ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  246. goto cleanup;
  247. }
  248. /* Calculate intermediate values */
  249. for( t = 1; t <= s; t++ )
  250. {
  251. memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH );
  252. memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH );
  253. ret = mbedtls_cipher_update( &ctx->cipher_ctx,
  254. inbuff, 16, outbuff, &olen );
  255. if( ret != 0 )
  256. goto cleanup;
  257. memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH );
  258. calc_a_xor_t( A, t );
  259. memcpy( R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH );
  260. R2 += KW_SEMIBLOCK_LENGTH;
  261. if( R2 >= output + ( semiblocks * KW_SEMIBLOCK_LENGTH ) )
  262. R2 = output + KW_SEMIBLOCK_LENGTH;
  263. }
  264. }
  265. *out_len = semiblocks * KW_SEMIBLOCK_LENGTH;
  266. cleanup:
  267. if( ret != 0)
  268. {
  269. memset( output, 0, semiblocks * KW_SEMIBLOCK_LENGTH );
  270. }
  271. mbedtls_platform_zeroize( inbuff, KW_SEMIBLOCK_LENGTH * 2 );
  272. mbedtls_platform_zeroize( outbuff, KW_SEMIBLOCK_LENGTH * 2 );
  273. return( ret );
  274. }
  275. /*
  276. * W-1 function as defined in RFC 3394 section 2.2.2
  277. * This function assumes the following:
  278. * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH.
  279. * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH.
  280. * 3. Minimal number of semiblocks is 3.
  281. * 4. A is a buffer to hold the first semiblock of the input buffer.
  282. */
  283. static int unwrap( mbedtls_nist_kw_context *ctx,
  284. const unsigned char *input, size_t semiblocks,
  285. unsigned char A[KW_SEMIBLOCK_LENGTH],
  286. unsigned char *output, size_t* out_len )
  287. {
  288. int ret = 0;
  289. const size_t s = 6 * ( semiblocks - 1 );
  290. size_t olen;
  291. uint64_t t = 0;
  292. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  293. unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
  294. unsigned char *R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH;
  295. *out_len = 0;
  296. if( semiblocks < MIN_SEMIBLOCKS_COUNT )
  297. {
  298. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  299. }
  300. memcpy( A, input, KW_SEMIBLOCK_LENGTH );
  301. memmove( output, input + KW_SEMIBLOCK_LENGTH, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH );
  302. /* Calculate intermediate values */
  303. for( t = s; t >= 1; t-- )
  304. {
  305. calc_a_xor_t( A, t );
  306. memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH );
  307. memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH );
  308. ret = mbedtls_cipher_update( &ctx->cipher_ctx,
  309. inbuff, 16, outbuff, &olen );
  310. if( ret != 0 )
  311. goto cleanup;
  312. memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH );
  313. /* Set R as LSB64 of outbuff */
  314. memcpy( R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH );
  315. if( R == output )
  316. R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH;
  317. else
  318. R -= KW_SEMIBLOCK_LENGTH;
  319. }
  320. *out_len = ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH;
  321. cleanup:
  322. if( ret != 0)
  323. memset( output, 0, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH );
  324. mbedtls_platform_zeroize( inbuff, sizeof( inbuff ) );
  325. mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) );
  326. return( ret );
  327. }
  328. /*
  329. * KW-AD as defined in SP 800-38F section 6.2
  330. * KWP-AD as defined in SP 800-38F section 6.3
  331. */
  332. int mbedtls_nist_kw_unwrap( mbedtls_nist_kw_context *ctx,
  333. mbedtls_nist_kw_mode_t mode,
  334. const unsigned char *input, size_t in_len,
  335. unsigned char *output, size_t *out_len, size_t out_size )
  336. {
  337. int ret = 0;
  338. size_t i, olen;
  339. unsigned char A[KW_SEMIBLOCK_LENGTH];
  340. unsigned char diff, bad_padding = 0;
  341. *out_len = 0;
  342. if( out_size < in_len - KW_SEMIBLOCK_LENGTH )
  343. {
  344. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  345. }
  346. if( mode == MBEDTLS_KW_MODE_KW )
  347. {
  348. /*
  349. * According to SP 800-38F Table 1, the ciphertext length for KW
  350. * must be between 3 to 2^54 semiblocks inclusive.
  351. */
  352. if( in_len < 24 ||
  353. #if SIZE_MAX > 0x200000000000000
  354. in_len > 0x200000000000000 ||
  355. #endif
  356. in_len % KW_SEMIBLOCK_LENGTH != 0 )
  357. {
  358. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  359. }
  360. ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
  361. A, output, out_len );
  362. if( ret != 0 )
  363. goto cleanup;
  364. /* Check ICV in "constant-time" */
  365. diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH );
  366. if( diff != 0 )
  367. {
  368. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  369. goto cleanup;
  370. }
  371. }
  372. else if( mode == MBEDTLS_KW_MODE_KWP )
  373. {
  374. size_t padlen = 0;
  375. uint32_t Plen;
  376. /*
  377. * According to SP 800-38F Table 1, the ciphertext length for KWP
  378. * must be between 2 to 2^29 semiblocks inclusive.
  379. */
  380. if( in_len < KW_SEMIBLOCK_LENGTH * 2 ||
  381. #if SIZE_MAX > 0x100000000
  382. in_len > 0x100000000 ||
  383. #endif
  384. in_len % KW_SEMIBLOCK_LENGTH != 0 )
  385. {
  386. return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
  387. }
  388. if( in_len == KW_SEMIBLOCK_LENGTH * 2 )
  389. {
  390. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  391. ret = mbedtls_cipher_update( &ctx->cipher_ctx,
  392. input, 16, outbuff, &olen );
  393. if( ret != 0 )
  394. goto cleanup;
  395. memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH );
  396. memcpy( output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH );
  397. mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) );
  398. *out_len = KW_SEMIBLOCK_LENGTH;
  399. }
  400. else
  401. {
  402. /* in_len >= KW_SEMIBLOCK_LENGTH * 3 */
  403. ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
  404. A, output, out_len );
  405. if( ret != 0 )
  406. goto cleanup;
  407. }
  408. /* Check ICV in "constant-time" */
  409. diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2 );
  410. if( diff != 0 )
  411. {
  412. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  413. }
  414. GET_UINT32_BE( Plen, A, KW_SEMIBLOCK_LENGTH / 2 );
  415. /*
  416. * Plen is the length of the plaintext, when the input is valid.
  417. * If Plen is larger than the plaintext and padding, padlen will be
  418. * larger than 8, because of the type wrap around.
  419. */
  420. padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen;
  421. if ( padlen > 7 )
  422. {
  423. padlen &= 7;
  424. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  425. }
  426. /* Check padding in "constant-time" */
  427. for( diff = 0, i = 0; i < KW_SEMIBLOCK_LENGTH; i++ )
  428. {
  429. if( i >= KW_SEMIBLOCK_LENGTH - padlen )
  430. diff |= output[*out_len - KW_SEMIBLOCK_LENGTH + i];
  431. else
  432. bad_padding |= output[*out_len - KW_SEMIBLOCK_LENGTH + i];
  433. }
  434. if( diff != 0 )
  435. {
  436. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  437. }
  438. if( ret != 0 )
  439. {
  440. goto cleanup;
  441. }
  442. memset( output + Plen, 0, padlen );
  443. *out_len = Plen;
  444. }
  445. else
  446. {
  447. ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
  448. goto cleanup;
  449. }
  450. cleanup:
  451. if( ret != 0 )
  452. {
  453. memset( output, 0, *out_len );
  454. *out_len = 0;
  455. }
  456. mbedtls_platform_zeroize( &bad_padding, sizeof( bad_padding) );
  457. mbedtls_platform_zeroize( &diff, sizeof( diff ) );
  458. mbedtls_platform_zeroize( A, sizeof( A ) );
  459. return( ret );
  460. }
  461. #endif /* !MBEDTLS_NIST_KW_ALT */
  462. #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
  463. #define KW_TESTS 3
  464. /*
  465. * Test vectors taken from NIST
  466. * https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/CAVP-TESTING-BLOCK-CIPHER-MODES#KW
  467. */
  468. static const unsigned int key_len[KW_TESTS] = { 16, 24, 32 };
  469. static const unsigned char kw_key[KW_TESTS][32] = {
  470. { 0x75, 0x75, 0xda, 0x3a, 0x93, 0x60, 0x7c, 0xc2,
  471. 0xbf, 0xd8, 0xce, 0xc7, 0xaa, 0xdf, 0xd9, 0xa6 },
  472. { 0x2d, 0x85, 0x26, 0x08, 0x1d, 0x02, 0xfb, 0x5b,
  473. 0x85, 0xf6, 0x9a, 0xc2, 0x86, 0xec, 0xd5, 0x7d,
  474. 0x40, 0xdf, 0x5d, 0xf3, 0x49, 0x47, 0x44, 0xd3 },
  475. { 0x11, 0x2a, 0xd4, 0x1b, 0x48, 0x56, 0xc7, 0x25,
  476. 0x4a, 0x98, 0x48, 0xd3, 0x0f, 0xdd, 0x78, 0x33,
  477. 0x5b, 0x03, 0x9a, 0x48, 0xa8, 0x96, 0x2c, 0x4d,
  478. 0x1c, 0xb7, 0x8e, 0xab, 0xd5, 0xda, 0xd7, 0x88 }
  479. };
  480. static const unsigned char kw_msg[KW_TESTS][40] = {
  481. { 0x42, 0x13, 0x6d, 0x3c, 0x38, 0x4a, 0x3e, 0xea,
  482. 0xc9, 0x5a, 0x06, 0x6f, 0xd2, 0x8f, 0xed, 0x3f },
  483. { 0x95, 0xc1, 0x1b, 0xf5, 0x35, 0x3a, 0xfe, 0xdb,
  484. 0x98, 0xfd, 0xd6, 0xc8, 0xca, 0x6f, 0xdb, 0x6d,
  485. 0xa5, 0x4b, 0x74, 0xb4, 0x99, 0x0f, 0xdc, 0x45,
  486. 0xc0, 0x9d, 0x15, 0x8f, 0x51, 0xce, 0x62, 0x9d,
  487. 0xe2, 0xaf, 0x26, 0xe3, 0x25, 0x0e, 0x6b, 0x4c },
  488. { 0x1b, 0x20, 0xbf, 0x19, 0x90, 0xb0, 0x65, 0xd7,
  489. 0x98, 0xe1, 0xb3, 0x22, 0x64, 0xad, 0x50, 0xa8,
  490. 0x74, 0x74, 0x92, 0xba, 0x09, 0xa0, 0x4d, 0xd1 }
  491. };
  492. static const size_t kw_msg_len[KW_TESTS] = { 16, 40, 24 };
  493. static const size_t kw_out_len[KW_TESTS] = { 24, 48, 32 };
  494. static const unsigned char kw_res[KW_TESTS][48] = {
  495. { 0x03, 0x1f, 0x6b, 0xd7, 0xe6, 0x1e, 0x64, 0x3d,
  496. 0xf6, 0x85, 0x94, 0x81, 0x6f, 0x64, 0xca, 0xa3,
  497. 0xf5, 0x6f, 0xab, 0xea, 0x25, 0x48, 0xf5, 0xfb },
  498. { 0x44, 0x3c, 0x6f, 0x15, 0x09, 0x83, 0x71, 0x91,
  499. 0x3e, 0x5c, 0x81, 0x4c, 0xa1, 0xa0, 0x42, 0xec,
  500. 0x68, 0x2f, 0x7b, 0x13, 0x6d, 0x24, 0x3a, 0x4d,
  501. 0x6c, 0x42, 0x6f, 0xc6, 0x97, 0x15, 0x63, 0xe8,
  502. 0xa1, 0x4a, 0x55, 0x8e, 0x09, 0x64, 0x16, 0x19,
  503. 0xbf, 0x03, 0xfc, 0xaf, 0x90, 0xb1, 0xfc, 0x2d },
  504. { 0xba, 0x8a, 0x25, 0x9a, 0x47, 0x1b, 0x78, 0x7d,
  505. 0xd5, 0xd5, 0x40, 0xec, 0x25, 0xd4, 0x3d, 0x87,
  506. 0x20, 0x0f, 0xda, 0xdc, 0x6d, 0x1f, 0x05, 0xd9,
  507. 0x16, 0x58, 0x4f, 0xa9, 0xf6, 0xcb, 0xf5, 0x12 }
  508. };
  509. static const unsigned char kwp_key[KW_TESTS][32] = {
  510. { 0x78, 0x65, 0xe2, 0x0f, 0x3c, 0x21, 0x65, 0x9a,
  511. 0xb4, 0x69, 0x0b, 0x62, 0x9c, 0xdf, 0x3c, 0xc4 },
  512. { 0xf5, 0xf8, 0x96, 0xa3, 0xbd, 0x2f, 0x4a, 0x98,
  513. 0x23, 0xef, 0x16, 0x2b, 0x00, 0xb8, 0x05, 0xd7,
  514. 0xde, 0x1e, 0xa4, 0x66, 0x26, 0x96, 0xa2, 0x58 },
  515. { 0x95, 0xda, 0x27, 0x00, 0xca, 0x6f, 0xd9, 0xa5,
  516. 0x25, 0x54, 0xee, 0x2a, 0x8d, 0xf1, 0x38, 0x6f,
  517. 0x5b, 0x94, 0xa1, 0xa6, 0x0e, 0xd8, 0xa4, 0xae,
  518. 0xf6, 0x0a, 0x8d, 0x61, 0xab, 0x5f, 0x22, 0x5a }
  519. };
  520. static const unsigned char kwp_msg[KW_TESTS][31] = {
  521. { 0xbd, 0x68, 0x43, 0xd4, 0x20, 0x37, 0x8d, 0xc8,
  522. 0x96 },
  523. { 0x6c, 0xcd, 0xd5, 0x85, 0x18, 0x40, 0x97, 0xeb,
  524. 0xd5, 0xc3, 0xaf, 0x3e, 0x47, 0xd0, 0x2c, 0x19,
  525. 0x14, 0x7b, 0x4d, 0x99, 0x5f, 0x96, 0x43, 0x66,
  526. 0x91, 0x56, 0x75, 0x8c, 0x13, 0x16, 0x8f },
  527. { 0xd1 }
  528. };
  529. static const size_t kwp_msg_len[KW_TESTS] = { 9, 31, 1 };
  530. static const unsigned char kwp_res[KW_TESTS][48] = {
  531. { 0x41, 0xec, 0xa9, 0x56, 0xd4, 0xaa, 0x04, 0x7e,
  532. 0xb5, 0xcf, 0x4e, 0xfe, 0x65, 0x96, 0x61, 0xe7,
  533. 0x4d, 0xb6, 0xf8, 0xc5, 0x64, 0xe2, 0x35, 0x00 },
  534. { 0x4e, 0x9b, 0xc2, 0xbc, 0xbc, 0x6c, 0x1e, 0x13,
  535. 0xd3, 0x35, 0xbc, 0xc0, 0xf7, 0x73, 0x6a, 0x88,
  536. 0xfa, 0x87, 0x53, 0x66, 0x15, 0xbb, 0x8e, 0x63,
  537. 0x8b, 0xcc, 0x81, 0x66, 0x84, 0x68, 0x17, 0x90,
  538. 0x67, 0xcf, 0xa9, 0x8a, 0x9d, 0x0e, 0x33, 0x26 },
  539. { 0x06, 0xba, 0x7a, 0xe6, 0xf3, 0x24, 0x8c, 0xfd,
  540. 0xcf, 0x26, 0x75, 0x07, 0xfa, 0x00, 0x1b, 0xc4 }
  541. };
  542. static const size_t kwp_out_len[KW_TESTS] = { 24, 40, 16 };
  543. int mbedtls_nist_kw_self_test( int verbose )
  544. {
  545. mbedtls_nist_kw_context ctx;
  546. unsigned char out[48];
  547. size_t olen;
  548. int i;
  549. int ret = 0;
  550. mbedtls_nist_kw_init( &ctx );
  551. for( i = 0; i < KW_TESTS; i++ )
  552. {
  553. if( verbose != 0 )
  554. mbedtls_printf( " KW-AES-%u ", (unsigned int) key_len[i] * 8 );
  555. ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES,
  556. kw_key[i], key_len[i] * 8, 1 );
  557. if( ret != 0 )
  558. {
  559. if( verbose != 0 )
  560. mbedtls_printf( " KW: setup failed " );
  561. goto end;
  562. }
  563. ret = mbedtls_nist_kw_wrap( &ctx, MBEDTLS_KW_MODE_KW, kw_msg[i],
  564. kw_msg_len[i], out, &olen, sizeof( out ) );
  565. if( ret != 0 || kw_out_len[i] != olen ||
  566. memcmp( out, kw_res[i], kw_out_len[i] ) != 0 )
  567. {
  568. if( verbose != 0 )
  569. mbedtls_printf( "failed. ");
  570. ret = 1;
  571. goto end;
  572. }
  573. if( ( ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES,
  574. kw_key[i], key_len[i] * 8, 0 ) )
  575. != 0 )
  576. {
  577. if( verbose != 0 )
  578. mbedtls_printf( " KW: setup failed ");
  579. goto end;
  580. }
  581. ret = mbedtls_nist_kw_unwrap( &ctx, MBEDTLS_KW_MODE_KW,
  582. out, olen, out, &olen, sizeof( out ) );
  583. if( ret != 0 || olen != kw_msg_len[i] ||
  584. memcmp( out, kw_msg[i], kw_msg_len[i] ) != 0 )
  585. {
  586. if( verbose != 0 )
  587. mbedtls_printf( "failed\n" );
  588. ret = 1;
  589. goto end;
  590. }
  591. if( verbose != 0 )
  592. mbedtls_printf( " passed\n" );
  593. }
  594. for( i = 0; i < KW_TESTS; i++ )
  595. {
  596. olen = sizeof( out );
  597. if( verbose != 0 )
  598. mbedtls_printf( " KWP-AES-%u ", (unsigned int) key_len[i] * 8 );
  599. ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i],
  600. key_len[i] * 8, 1 );
  601. if( ret != 0 )
  602. {
  603. if( verbose != 0 )
  604. mbedtls_printf( " KWP: setup failed " );
  605. goto end;
  606. }
  607. ret = mbedtls_nist_kw_wrap( &ctx, MBEDTLS_KW_MODE_KWP, kwp_msg[i],
  608. kwp_msg_len[i], out, &olen, sizeof( out ) );
  609. if( ret != 0 || kwp_out_len[i] != olen ||
  610. memcmp( out, kwp_res[i], kwp_out_len[i] ) != 0 )
  611. {
  612. if( verbose != 0 )
  613. mbedtls_printf( "failed. ");
  614. ret = 1;
  615. goto end;
  616. }
  617. if( ( ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES,
  618. kwp_key[i], key_len[i] * 8, 0 ) )
  619. != 0 )
  620. {
  621. if( verbose != 0 )
  622. mbedtls_printf( " KWP: setup failed ");
  623. goto end;
  624. }
  625. ret = mbedtls_nist_kw_unwrap( &ctx, MBEDTLS_KW_MODE_KWP, out,
  626. olen, out, &olen, sizeof( out ) );
  627. if( ret != 0 || olen != kwp_msg_len[i] ||
  628. memcmp( out, kwp_msg[i], kwp_msg_len[i] ) != 0 )
  629. {
  630. if( verbose != 0 )
  631. mbedtls_printf( "failed. ");
  632. ret = 1;
  633. goto end;
  634. }
  635. if( verbose != 0 )
  636. mbedtls_printf( " passed\n" );
  637. }
  638. end:
  639. mbedtls_nist_kw_free( &ctx );
  640. if( verbose != 0 )
  641. mbedtls_printf( "\n" );
  642. return( ret );
  643. }
  644. #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
  645. #endif /* MBEDTLS_NIST_KW_C */