123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- /*
- * Helper functions for the RSA module
- *
- * Copyright (C) 2006-2017, ARM Limited, All Rights Reserved
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of mbed TLS (https://tls.mbed.org)
- *
- */
- #if !defined(MBEDTLS_CONFIG_FILE)
- #include "mbedtls/config.h"
- #else
- #include MBEDTLS_CONFIG_FILE
- #endif
- #if defined(MBEDTLS_RSA_C)
- #include "mbedtls/rsa.h"
- #include "mbedtls/bignum.h"
- #include "mbedtls/rsa_internal.h"
- /*
- * Compute RSA prime factors from public and private exponents
- *
- * Summary of algorithm:
- * Setting F := lcm(P-1,Q-1), the idea is as follows:
- *
- * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
- * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
- * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
- * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
- * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
- * factors of N.
- *
- * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
- * construction still applies since (-)^K is the identity on the set of
- * roots of 1 in Z/NZ.
- *
- * The public and private key primitives (-)^E and (-)^D are mutually inverse
- * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
- * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
- * Splitting L = 2^t * K with K odd, we have
- *
- * DE - 1 = FL = (F/2) * (2^(t+1)) * K,
- *
- * so (F / 2) * K is among the numbers
- *
- * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
- *
- * where ord is the order of 2 in (DE - 1).
- * We can therefore iterate through these numbers apply the construction
- * of (a) and (b) above to attempt to factor N.
- *
- */
- int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
- mbedtls_mpi const *E, mbedtls_mpi const *D,
- mbedtls_mpi *P, mbedtls_mpi *Q )
- {
- int ret = 0;
- uint16_t attempt; /* Number of current attempt */
- uint16_t iter; /* Number of squares computed in the current attempt */
- uint16_t order; /* Order of 2 in DE - 1 */
- mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
- mbedtls_mpi K; /* Temporary holding the current candidate */
- const unsigned char primes[] = { 2,
- 3, 5, 7, 11, 13, 17, 19, 23,
- 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137,
- 139, 149, 151, 157, 163, 167, 173, 179,
- 181, 191, 193, 197, 199, 211, 223, 227,
- 229, 233, 239, 241, 251
- };
- const size_t num_primes = sizeof( primes ) / sizeof( *primes );
- if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
- mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
- mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
- {
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- }
- /*
- * Initializations and temporary changes
- */
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &T );
- /* T := DE - 1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
- if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
- {
- ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- goto cleanup;
- }
- /* After this operation, T holds the largest odd divisor of DE - 1. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
- /*
- * Actual work
- */
- /* Skip trying 2 if N == 1 mod 8 */
- attempt = 0;
- if( N->p[0] % 8 == 1 )
- attempt = 1;
- for( ; attempt < num_primes; ++attempt )
- {
- mbedtls_mpi_lset( &K, primes[attempt] );
- /* Check if gcd(K,N) = 1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
- if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
- continue;
- /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
- * and check whether they have nontrivial GCD with N. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
- Q /* temporarily use Q for storing Montgomery
- * multiplication helper values */ ) );
- for( iter = 1; iter <= order; ++iter )
- {
- /* If we reach 1 prematurely, there's no point
- * in continuing to square K */
- if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
- break;
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
- if( mbedtls_mpi_cmp_int( P, 1 ) == 1 &&
- mbedtls_mpi_cmp_mpi( P, N ) == -1 )
- {
- /*
- * Have found a nontrivial divisor P of N.
- * Set Q := N / P.
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
- }
- /*
- * If we get here, then either we prematurely aborted the loop because
- * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
- * be 1 if D,E,N were consistent.
- * Check if that's the case and abort if not, to avoid very long,
- * yet eventually failing, computations if N,D,E were not sane.
- */
- if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
- {
- break;
- }
- }
- ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &T );
- return( ret );
- }
- /*
- * Given P, Q and the public exponent E, deduce D.
- * This is essentially a modular inversion.
- */
- int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
- mbedtls_mpi const *Q,
- mbedtls_mpi const *E,
- mbedtls_mpi *D )
- {
- int ret = 0;
- mbedtls_mpi K, L;
- if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( E, 0 ) == 0 )
- {
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
- }
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
- /* Temporarily put K := P-1 and L := Q-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
- /* Temporarily put D := gcd(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
- /* K := LCM(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
- /* Compute modular inverse of E in LCM(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
- cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
- return( ret );
- }
- /*
- * Check that RSA CRT parameters are in accordance with core parameters.
- */
- int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
- const mbedtls_mpi *D, const mbedtls_mpi *DP,
- const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
- {
- int ret = 0;
- mbedtls_mpi K, L;
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
- /* Check that DP - D == 0 mod P - 1 */
- if( DP != NULL )
- {
- if( P == NULL )
- {
- ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
- if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- /* Check that DQ - D == 0 mod Q - 1 */
- if( DQ != NULL )
- {
- if( Q == NULL )
- {
- ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
- if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- /* Check that QP * Q - 1 == 0 mod P */
- if( QP != NULL )
- {
- if( P == NULL || Q == NULL )
- {
- ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- cleanup:
- /* Wrap MPI error codes by RSA check failure error code */
- if( ret != 0 &&
- ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
- ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
- {
- ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- }
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
- return( ret );
- }
- /*
- * Check that core RSA parameters are sane.
- */
- int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
- const mbedtls_mpi *Q, const mbedtls_mpi *D,
- const mbedtls_mpi *E,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret = 0;
- mbedtls_mpi K, L;
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
- /*
- * Step 1: If PRNG provided, check that P and Q are prime
- */
- #if defined(MBEDTLS_GENPRIME)
- /*
- * When generating keys, the strongest security we support aims for an error
- * rate of at most 2^-100 and we are aiming for the same certainty here as
- * well.
- */
- if( f_rng != NULL && P != NULL &&
- ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- if( f_rng != NULL && Q != NULL &&
- ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- #else
- ((void) f_rng);
- ((void) p_rng);
- #endif /* MBEDTLS_GENPRIME */
- /*
- * Step 2: Check that 1 < N = P * Q
- */
- if( P != NULL && Q != NULL && N != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
- if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- /*
- * Step 3: Check and 1 < D, E < N if present.
- */
- if( N != NULL && D != NULL && E != NULL )
- {
- if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
- mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- /*
- * Step 4: Check that D, E are inverse modulo P-1 and Q-1
- */
- if( P != NULL && Q != NULL && D != NULL && E != NULL )
- {
- if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- /* Compute DE-1 mod P-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- /* Compute DE-1 mod Q-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
- ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- goto cleanup;
- }
- }
- cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
- /* Wrap MPI error codes by RSA check failure error code */
- if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
- {
- ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
- }
- return( ret );
- }
- int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
- const mbedtls_mpi *D, mbedtls_mpi *DP,
- mbedtls_mpi *DQ, mbedtls_mpi *QP )
- {
- int ret = 0;
- mbedtls_mpi K;
- mbedtls_mpi_init( &K );
- /* DP = D mod P-1 */
- if( DP != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
- }
- /* DQ = D mod Q-1 */
- if( DQ != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
- }
- /* QP = Q^{-1} mod P */
- if( QP != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
- }
- cleanup:
- mbedtls_mpi_free( &K );
- return( ret );
- }
- #endif /* MBEDTLS_RSA_C */
|